Construction Managers

Construction managers plan, coordinate, budget, and supervise construction projects from early development to completion.

Construction managers typically do the following:

  • Prepare and negotiate cost estimates, budgets, and work timetables
  • Select appropriate construction methods and strategies
  • Interpret and explain contracts and technical information to workers and other professionals
  • Report on work progress and budget matters to clients
  • Collaborate with architects, engineers, and other construction and building specialists
  • Instruct and supervise construction personnel and activities onsite
  • Respond to work delays and other problems and emergencies
  • Select, hire, and instruct laborers and subcontractors  
  • Comply with legal requirements, building and safety codes, and other regulations

Construction managers, often called general contractors or project managers, coordinate and supervise a wide variety of projects, including the building of all types of residential, commercial, and industrial structures, roads, bridges, powerplants, schools, and hospitals. They oversee specialized contractors and other personnel. Construction managers schedule and coordinate all design and construction processes to ensure a productive and safe work environment. They also make sure jobs are completed on time and on budget with the right amount of tools, equipment, and materials. Many managers also are responsible for obtaining necessary permits and licenses. They are often responsible for multiple projects at a time.

Construction managers work closely with other building specialists, such as architects, engineers, and a variety of trade workers, such as stonemasons, electricians, and carpenters. Projects may require specialists in everything from structural metalworking and painting, to landscaping, building roads, installing carpets, and excavating sites. Depending on the project, construction managers also may interact with lawyers and local government officials. For example, when working on city-owned property or municipal buildings, managers sometimes confer with city council members to ensure that all regulations are met.

For projects too large to be managed by one person, such as office buildings and industrial complexes, a construction manager would only be in charge of one part of the project. Each construction manager would oversee a specific construction phase and choose subcontractors to complete it. Construction managers may need to collaborate and coordinate with other construction managers who are responsible for different aspects of the project.

To maximize efficiency and productivity, construction managers often use specialized cost-estimating and planning software to effectively budget the time and money required to complete specific projects. Many managers also use software to determine the best way to get materials to the building site. For more information, see the profile on cost estimators.


Electricians

Electricians install and maintain electrical systems in homes, businesses, and factories.

Electricians typically do the following:

  • Read blueprints or technical diagrams before doing work
  • Install and maintain wiring and lighting systems
  • Inspect electrical components, such as transformers and circuit breakers
  • Identify electrical problems with a variety of testing devices
  • Repair or replace wiring, equipment, or fixtures using hand tools and power tools
  • Follow state and local building regulations based on the National Electric Code
  • Direct and train workers to install, maintain, or repair electrical wiring or equipment

Almost every building has an electrical system that is installed during construction and maintained after that. Electricians do both the installing and maintaining of electrical systems.

Installing electrical systems is less complicated than maintaining older equipment. This is because it is easier to get to electrical wiring during construction. Maintaining older equipment, however, involves identifying problems and repairing malfunctioning equipment that is sometimes difficult to reach. Electricians doing maintenance work may need to fix or replace outlets, circuit breakers, motors, or robotic control systems.

Electricians read blueprints, which are technical diagrams of electrical systems that show the location of circuits, outlets, and other equipment. They use different types of hand and power tools, such as pipe benders, to run and protect wiring. Other commonly used hand and power tools include screwdrivers, wire strippers, drills, and saws. While troubleshooting, electricians also may use ammeters, voltmeters, and multimeters to find problems and ensure that components are working properly.

Many electricians work independently, but sometimes they collaborate with others. For example, experienced electricians may work with building engineers and architects to help design electrical systems in new construction. Some electricians also may consult with other construction specialists, such as elevator installers and heating and air conditioning workers, to help install or maintain electrical or power systems. At larger companies, electricians are more likely to work as part of a crew; they may direct helpers and apprentices to complete jobs.

The following are examples of occupational specialties:

Inside electricians maintain and repair large motors, equipment, and control systems in businesses and factories. They use their knowledge of electrical systems to help these facilities run safely and efficiently. Some also install the wiring for businesses and factories that are being built. To minimize equipment failure, inside electricians often perform scheduled maintenance.   

Residential electricians install wiring and troubleshoot electrical problems in peoples' homes. Those who work in new-home construction install outlets and provide access to power where needed. Those who work in maintenance and remodeling repair and replace faulty equipment. For example, if a circuit breaker is tripped, electricians determine the reason and fix it.


Cost Estimators

Cost estimators collect and analyze data to estimate the time, money, resources, and labor required for product manufacturing, construction projects, or services. Some specialize in a particular industry or product type.

Cost estimators typically do the following:

  • Consult with industry experts to discuss estimates and resolve issues
  • Identify and quantify cost factors, such as production time and raw material, equipment, and labor expenses
  • Travel to job sites to gather information on materials needed, labor requirements, and other factors 
  • Read blueprints and technical documents to prepare estimates
  • Collaborate with engineers, architects, owners, and contractors on estimates
  • Use sophisticated computer software to calculate estimates 
  • Evaluate a product's cost effectiveness or profitability
  • Recommend ways to make a product more cost effective or profitable
  • Prepare estimates for clients and other business managers
  • Develop project plans for the duration of the project

Accurately predicting the cost, size, and duration of future construction and manufacturing projects is vital to the survival of any business. Cost estimators' calculations give managers or investors this information.

When making calculations, estimators analyze many inputs to determine how much time, money, and labor a project needs, or how profitable it will be. These estimates have to take many factors into account, including allowances for wasted material, bad weather, shipping delays, and other factors that can increase costs and lower profitability.

Cost estimators use sophisticated computer software, including database, simulation, and complex mathematical programs. Cost estimators often use a computer database with information on the costs of other similar projects.

General contractors usually hire cost estimators for specific parts of a large construction project, such as estimating the electrical work or the excavation phase. In such cases, the estimator calculates the cost of the construction phase for which the contractor is responsible, rather than calculating the cost of the entire project. The general contractor usually also has a cost estimator who calculates the total project cost by analyzing the bids that the subcontractors' cost estimators prepared.

Some estimators are hired by manufacturers to analyze certain products or processes.

The following are the two primary types of cost estimators:

Construction cost estimators estimate construction work. More than half of all cost estimators work in the construction industry. They may, for example, estimate the total cost of building a bridge or a highway. They may identify direct costs, such as raw materials and labor requirements, and set a timeline for the project. Although many work directly for construction firms, some work for contractors, architects, and engineering firms.

Manufacturing cost estimators calculate the costs of developing, producing, or redesigning a company's goods and services. For example, a cost estimator working for a home appliance manufacturer may determine whether a new type of dishwasher will be profitable to manufacture.

Some manufacturing cost estimators work in software development. Many high-technology products require a considerable amount of computer programming, and the costs of software development are difficult to calculate.  

Two other groups also sometimes do cost estimating in their jobs. Operations research, production control, cost, and price analysts who work for government agencies may do significant amounts of cost estimating in the course of their usual duties. Construction managers also may spend considerable time estimating costs. For more information, see the profiles on operations research analysts and construction managers.


Assemblers and Fabricators

Assemblers and fabricators assemble both finished products and the parts that go into them. They use tools, machines, and their hands to make engines, computers, aircraft, toys, electronic devices, and more.

Assemblers and fabricators typically do the following:

  • Read and understand detailed schematics and blueprints
  • Use hand tools or machines to assemble parts
  • Conduct quality control checks
  • Work closely with designers and engineers in product development 

Assemblers and fabricators have an important role in the manufacturing process. They assemble both finished products and the pieces that go into them. The products encompass a full range of manufactured products, including aircraft, toys, household appliances, automobiles, computers, and electronic devices.

Changes in technology have transformed the manufacturing and assembly process. Modern manufacturing systems use robots, computers, programmable motion-control devices, and various sensing technologies. These systems change the way in which goods are made and affect the jobs of those who make them. Advanced assemblers must be able to work with these new technologies and use them to produce goods.

The job of an assembler or fabricator ranges from very easy to very complicated, requiring a range of knowledge and skills. Skilled assemblers putting together complex machines, for example, read detailed schematics or blueprints that show how to assemble the machine. After determining how parts should connect, they use hand or power tools to trim, shim, cut, and make other adjustments to fit components together and align them properly. Once the parts are properly aligned, they connect them with bolts and screws or weld or solder pieces together.

Quality control is important throughout the assembly process, so assemblers look for faulty components and mistakes in the assembly process. They help to fix problems before defective products are made.

Manufacturing techniques are moving away from traditional assembly line systems toward lean manufacturing systems, which use teams of workers to produce entire products or components. Lean manufacturing has changed the nature of the assemblers' duties.

It has become more common to involve assemblers and fabricators in product development. Designers and engineers consult manufacturing workers during the design stage to improve product reliability and manufacturing efficiency. Some experienced assemblers work with designers and engineers to build prototypes or test products.

Although most assemblers and fabricators are classified as team assemblers, others specialize in producing one type of product or do the same or similar tasks throughout the assembly process.

The following are types of assemblers and fabricators:

Aircraft structure, surfaces, rigging, and systems assemblers fit, fasten, and install parts of airplanes, space vehicles, or missiles, such as wings, fuselage, landing gear, rigging and control equipment, or heating and ventilating systems.

Coil winders, tapers, and finishers wind wire coils of electrical components used in a variety of electric and electronic products, including resistors, transformers, generators, and electric motors.

Electrical and electronic equipment assemblers build products such as electric motors, computers, electronic control devices, and sensing equipment. Automated systems have been put in place because many small electronic parts are too small or fragile for human assembly. Much of the remaining work of electrical and electronic assemblers is done by hand during the small-scale production of electronic devices used in all types of aircraft, military systems, and medical equipment. Production by hand requires these workers to use devices such as soldering irons.

Electromechanical equipment assemblers assemble and modify electromechanical devices such as household appliances, computer tomography scanners, or vending machines. The workers use a variety of tools, such as rulers, rivet guns, and soldering irons.

Engine and machine assemblers construct, assemble, or rebuild engines, turbines, and machines used in automobiles, construction and mining equipment, and power generators.

Structural metal fabricators and fitters cut, align, and fit together structural metal parts and may help weld or rivet the parts together.

Fiberglass laminators and fabricators laminate layers of fiberglass on molds to form boat decks and hulls, bodies for golf carts, automobiles, or other products.

Team assemblers work on an assembly line, but they rotate through different tasks, rather than specializing in a single task. The team may decide how the work is assigned and how different tasks are done. Some aspects of lean production, such as rotating tasks and seeking worker input on improving the assembly process, are common to all assembly and fabrication occupations.

Timing device assemblers, adjusters, and calibrators do precision assembling or adjusting of timing devices within very narrow tolerances.


Roofers

Roofers repair and install the roofs of buildings using a variety of materials, including shingles, asphalt, and metal.

Roofers typically do the following:

  • Inspect problem roofs to determine the best way to repair them
  • Measure roof to calculate the quantities of materials needed
  • Replace damaged or rotting joists or plywood
  • Install vapor barriers or layers of insulation
  • Install shingles, asphalt, metal, or other materials to make the roof watertight
  • Align roofing materials with edges of the roof
  • Cut roofing materials to fit angles formed by walls, vents, or intersecting roof surfaces
  • Cover exposed nail or screw heads with roofing cement or caulk to prevent leakage

Properly installed roofs keep water from leaking into buildings and damaging the interior, equipment, or furnishings.

There are two basic types of roofs, low-slope and steep-slope:

  • Low-slope: About two-thirds of all roofs are low-slope. Most commercial, industrial, and apartment buildings have low-slope roofs. Low-slope roofs rise 4 inches or less per horizontal foot and are installed in layers.

    For low-slope roofs, roofers typically use several layers of roofing materials or felt membranes stuck together with hot bitumen (a tar-like substance). They glaze the top layer to make a smooth surface or embed gravel in the hot bitumen to make a rough surface.

    An increasing number of low-slope roofs are covered with a single-ply membrane of waterproof rubber or thermoplastic compounds.
  • Steep-slope: Most of the remaining roofs are steep-slope. Most single-family houses have steep-slope roofs. Steep-slope roofs rise more than 4 inches per horizontal foot.

    For steep-slope roofs, roofers typically use asphalt shingles, which often cost less than other coverings. On steep-slope roofs, some roofers also install tile, solar shingles, fiberglass shingles, metal shingles, or shakes (rough wooden shingles).

    To apply shingles, roofers first lay, cut, and tack 3-foot strips of roofing over the entire roof. Then, starting from the bottom edge, they nail overlapping rows of shingles to the roof.

A small but increasing number of buildings now have “green” roofs that incorporate landscape roofing systems. A landscape roofing system typically begins with a single or multiple waterproof layers. After that layer is proven to be leak free, roofers put a root barrier over it, and, finally, layers of soil, in which vegetation is planted. Roofers must ensure that the roof is watertight and can endure the weight and water needs of the plants.


U.S. ForensicSupportive Insurance Services