Painters apply paint, stain, and coatings to walls, buildings, bridges, and other structures.
Painters typically do the following:
Applying paint to interior walls makes surfaces attractive and vibrant. In addition, paints and other sealers protect exterior surfaces from erosion caused by exposure to the weather.
Because there are several ways to apply paint, workers must be able to choose the proper tool for each job, such as the correct roller, power sprayer, and the right size brush. Choosing the right tool typically depends on the surface to be covered and the characteristics of the finish.
A few painters--mainly industrial--must use special safety equipment. For example, painting in confined spaces such as the inside of a large storage tank, requires workers to wear self-contained suits to avoid inhaling toxic fumes. When painting bridges, tall buildings, or oil rigs, painters may work from scaffolding, bosun's chairs, and harnesses to reach work areas.
The following are examples of types of painters:
Construction painters apply paints, stains, and coatings to interior and exterior walls, new buildings, and other structural surfaces.
Maintenance painters remove old finishes and apply paints, stains, and coatings later in a structure's life. Some painters specialize in painting or coating industrial structures, such as bridges and oil rigs, to prevent corrosion.
Artisan painters specialize in creating distinct finishes by using one of many decorative techniques. One technique is adding glaze for added depth and texture. Other common techniques may include sponging, distressing, rag-rolling, color blocking, and faux finishes.
Painting and coating workers apply materials to manufactured products, such as furniture, toys and pottery, as well as transportation equipment including trucks, buses, boats, and airplanes. For more information about these painters, see the profile on painting and coating workers.
Environmental engineering technicians engineering technicians carry out the plans that environmental engineers develop.
Environmental engineering technicians typically do the following:
In laboratories, environmental engineering technicians record observations, test results, and document photographs. To keep the laboratory supplied, they also may get product information, identify vendors and suppliers, and order materials and equipment.
Environmental engineering technicians also help environmental engineers develop devices for cleaning up environmental pollution. They also inspect facilities for compliance with the regulations that govern substances such as asbestos, lead, and wastewater.
Hydrologists study water and the water cycle. They study the movement, distribution, and other properties of water, and they analyze how these influence the surrounding environment. They use their expertise to solve problems concerning water quality and availability, for example.
Hydrologists typically do the following:
Hydrologists use remote sensing equipment to collect data. They or technicians whom they supervise usually install and maintain this equipment.
They also use sophisticated computer programs to analyze and model data. They use sophisticated laboratory equipment to analyze chemical samples collected in the field.
Hydrologists work closely with engineers, scientists, and public officials to study and manage the water supply. For example, they work with policy makers to develop water conservation plans and with biologists to monitor marine wildlife.
Most hydrologists specialize in a specific water source or a certain aspect of the water cycle, such as the evaporation of water from lakes and streams. Some of the most common specialties are:
Groundwater hydrologists study the water below the Earth's surface. They decide the best locations for wells and the amount of water that should be pumped. They are often consulted about the best places to build waste disposal sites to ensure that the waste does not contaminate the groundwater.
Hydrometeorologists study the relationship between surface waters and water in the atmosphere. For example, to predict and prepare for droughts, they study how much rain or snow a particular area gets and how that evaporates.
Surface water hydrologists study water from above ground sources such as streams, lakes, and snow packs. They may predict future water levels and usage to help reservoir managers decide when to release or store water. They also produce flood forecasts and help develop flood management plans.
Some people with a hydrology background become professors or teachers. For more information, see the profile on postsecondary teachers.
Environmental scientists and specialists use their knowledge of the natural sciences to protect the environment. They identify problems and find solutions that minimize hazards to the health of the environment and the population.
Environmental scientists and specialists typically do the following:
Environmental scientists and specialists analyze environmental problems and develop solutions. For example, many environmental scientists and specialists work to reclaim lands and waters that have been contaminated by pollution. Others assess the risks new construction projects pose to the environment and make recommendations to governments and businesses on how to minimize the environmental impact of these projects. They also identify ways that human behavior can be changed to avoid problems such as the depletion of the ozone layer.
The federal government and many state and local governments have regulations to ensure that there is clean air to breathe, safe water to drink, and no hazardous materials in the soil. The regulations also place limits on development, particularly near sensitive parts of the ecosystem, such as wetlands. Many environmental scientists and specialists work for the government to ensure that these regulations are followed. Other environmental scientists work for consulting firms that help companies comply with regulations and policies.
Some environmental scientists and specialists focus on environmental regulations that are designed to protect people's health, while others focus on regulations designed to minimize society's impact on the ecosystem. The following are examples of types of specialists:
Environmental health specialists study how environmental factors impact human health. They investigate potential health risks, such as unsafe drinking water, disease, and food safety. They also educate the public about potential health risks present in the environment.
Environmental protection specialists monitor the effect human activity has on the environment. They investigate sources of pollution and develop prevention, control, and remediation plans.
Other environmental scientists do work and receive training that is similar to that of other physical or life scientists, but they focus on environmental issues. Environmental chemists are an example.
Environmental chemists study the effects that various chemicals have on ecosystems. For example, they look at how acids affect plants, animals, and people. Some areas in which they work include waste management and the remediation of contaminated soils, water, and air.
Many people with backgrounds in environmental science become professors and teachers. For more information, see the profile on postsecondary teachers.
Roofers repair and install the roofs of buildings using a variety of materials, including shingles, asphalt, and metal.
Roofers typically do the following:
Properly installed roofs keep water from leaking into buildings and damaging the interior, equipment, or furnishings.
There are two basic types of roofs, low-slope and steep-slope:
A small but increasing number of buildings now have “green” roofs that incorporate landscape roofing systems. A landscape roofing system typically begins with a single or multiple waterproof layers. After that layer is proven to be leak free, roofers put a root barrier over it, and, finally, layers of soil, in which vegetation is planted. Roofers must ensure that the roof is watertight and can endure the weight and water needs of the plants.